
1

Software Acceleration of Floating-point
Multiplication using Runtime Code Generation

– Student Paper –

Charles Aracil and Damien Couroussé
CEA, LIST, Laboratoire Infrastructures Atelier Logiciel pour Puce (LIALP)

Email: firstname.surname@cea.fr

Abstract—Floating-point units are seldom in highly constrained
systems, due to silicon and energy footprint, but emulated instead
in algorithms based on integer arithmetic. In this paper, we use
runtime code generation to generate outperforming flexible and
optimized floating-point routines. On a Texas Instrument MSP430
fitted with only 512 bytes of RAM, we achieved mean speedups
of 1032 % and 52 %, with tuning features enabling peaks up to
2012 % and 64 %, respectively for floating-point multiplication
and an applicative case. At the best of our knowledge, runtime
code generation was never achieved with such few computing and
memory resources.

I. INTRODUCTION

Embedded systems typically exhibit features far from those
of general purpose computing systems. The instruction set is
reduced to the basis and memories (either flash and RAM) can
be several orders of magnitude under those of general purpose
computing systems. In order to satisfy cost, silicon surface and
energy requirements, they use simpler hardware architecture,
involving more stress on software algorithms. Because of
their silicon and energy footprint, floating-point units (FPU)
are either seldom or reluctantly included in specific branches
of embedded systems wherein energy efficiency prevails on
computation speed. Sensor Networks are a prime example of
such branch, because they are composed of minimalist nodes
disconnected from any power outlet, dedicated to specific and
relatively simple tasks that cannot afford heavy architectures,
and because they prevail cost and energy autonomy on raw
computation power.

There are however cases where one cannot afford a dedi-
cated hardware, and where the acceleration of floating-point
processing is still desirable. This is the main motivation for
the work presented in this paper.

If the target processor lacks a FPU, the static compiler
selects software emulation for floating-point processing. These
emulation routines have a strong impact on performance,
because the processing of mantissa and exponent is per-
formed with integer arithmetic, and rounding operation is
then necessary to comply with the IEEE-754 floating-point
representation. CPU architectures less than 32 bits, which
still compose the major part of sensor network nodes, turn
these routines heavier. They cannot handle easily the 32-bits
word length of single-precision floating-point format, further
increasing register and memory pressure.

Static compilers are blind concerning the values to be
computed, preventing any optimization of runtime values even

when they are set just once along program execution. This is
the main weakness we tackle in this paper by using runtime
code generation. Runtime optimization will exploit the knowl-
edge of the values of ”configuration” variables. Such variables
are likely to change along application lifetime and cannot be
the target of constant propagation done by a static compilation.
However, they are constant over the time of a processing
step, which makes them a perfect match for optimization with
dynamic code generation.

Given the a priori knowledge, at runtime, of a part of
the floating-point data involved in computation, we aim at
generating ad hoc floating-point routines optimized for the
data already known at the time of runtime code generation.
Our approach is based on deGoal, a tool for building fast and
portable runtime code generators designed at CEA-LIST. At
the best of our knowledge, it is the first time that runtime
code generation is achieved on small processors below 32-bit
with very limited memory resources: our target platform is
the MSP430 microcontroller from Texas Instruments, which
offers 16-bit integer arithmetic and 512B of RAM. On this
platform, we are thus able to achieve speedups above 10×
compared with the standard emulation code produced by gcc.
The memory footprint of the runtime-generated emulation
routine is configurable, depending on the required precision.
We focus on floating-point multiplication, but our results are
easy to extend as division by a number is a multiplication by
its reciprocal.

The paper is organised as follows: Section II introduces re-
lated works, Section III describes our runtime code generation
method, Section IV presents the experimental setup and the
results obtained on floating-point multiplication. Section V il-
lustrates deGoal ability to fairly improve runtime performance
in a real case application.

II. RELATED WORKS

Dynamic compilation and runtime code generation have
been a long-standing topic in computer science papers. Famous
examples of dynamic compilation are Just-In-Time compila-
tion (JIT) used in Java virtual machines [1] and in the LLVM
framework [2]. Such approaches intend to be fully automatic
without requiring extra effort from application developers. The
drawback of this genericity lies in a heavyweight memory foot-
print and the need for important computation resources, which
is not compatible with the resources available on constrained
embedded systems such as nodes in sensor networks.

2

Other approaches try to alleviate runtime code generation
by exploiting the knowledge of the set of applicative cases
to handle. Static compiler produces a specialized runtime
code generator with a limited scope, but able to produce
highly optimised machine code with a low memory footprint
overhead. Consel at al. have applied this approach to spe-
cialize interpreters [3]. Our approach is similar to deferred
compilation as practiced by Leone et al. [4]: deGoal embeds
runtime code generators in an application. Each code generator
is statically compiled and highly specialized for a dedicated
processing algorithm and a target computing architecture. This
way, we are able to achieve runtime code generation on targets
that are out of reach of traditional runtime code generation
techniques.

There are numerous papers about optimization of floating-
point processing, either at algorithmic level [5] or implemen-
tation level [6]. A lot of papers cover the implementation of
floating-point processing in dedicated accelerators [7] or in
FPGAs [8]. At the best of our knowledge, it is the first time
runtime code generation was used to accelerate floating-point
computation.

III. EXPERIMENTAL FRAMEWORK

A. Code Generation Framework
We used the runtime code generation tool deGoal [9] to

build binary code generators. Within the deGoal environment,
we use a specific vocabulary:

a) kernel: A kernel is a small portion of code part of
a larger application which is most of the time under strong
performance constraints. In our case it is the floating-point
multiplication function.

b) compilette: The compilette is the runtime code gener-
ator that generates the binary code of the kernel.

c) seed: The seed is the runtime-known data required by
the compilette to generate the optimized function. Actually,
the seed can consist in one or several input values for the
compilette.

The development and execution process of applications
using deGoal is dispatched between static and run time. At
static time, the main application is developed as usual while the
compilette is developed using deGoal specific tools. Then the
entire application, including both main code and compilette,
is linked using the platform toolchain and loaded into the
platform. At runtime, the program starts and the seed becomes
known. The compilette is called and creates an optimized
binary code based on the knowing of this seed. Finally, this
binary kernel can be invocated by the application like any other
function.

In the context of constrained embedded systems, the code
generated could be stored either in RAM, which is more
accessible, or in flash in order to alleviate RAM pressure,
especially with the gap in size between both memories. How-
ever, the write endurance is limited in flash technologies to
tens of thousands, preventing developers from using it for test
purpose. Yet it could be used by a fully-fledged application
re-generating code at ”reasonable” frequency in order to free
RAM space, keep runtime code safe from crash or any feature

t y p e d e f k e r n e l (f l o a t (f ∗) (f l o a t) ;
k e r n e l mul M (f l o a t) ;

f l o a t fmul (f l o a t M, f l o a t X) ;
/∗ M i s known ; we g e n e r a t e t h e b i n a r y
code f o r t h e m u l t i p l i c a t i o n k e r n e l ∗ /
mul M = c o m p i l e t t e (M) ;

/∗ X i s known ,
r e s u l t = mul M ∗ X ∗ /
re turn (mul M (X)) ;

}

Fig. 1. A sketch of the runtime generation of a kernel for floating-point
multiplication, in pseudo C code

developers could think of. In the case of our experimental
setup, we have chosen to store all generated code in RAM. This
was a particularly challenging constraint because our target
platform offered only 512 bytes of RAM.

Embedded systems powered by a fluctuating source of
energy such as solar panels are also a perfect match for runtime
code generation as it enables temporal relocation of CPU
charge. More explicitly, deGoal can generate energy-saving
code when the source of energy is functional and use this
efficient code when it is not, in order to lengthen the on-battery
system lifetime.

B. Runtime Code Generation in Floating-Point Multiplication
The compilette generates a specialised kernel for floating-

point multiplication tuned for the first operand of the mul-
tiplication. We generate a libgcc-like function but optimizing
each step of floating-point multiplication (unpacking, mantissa
multiplication, exponent addition, renormalization, rounding
and repacking) for the runtime-known operand M.

In particular, mantissa multiplication undergoes a complete
overhaul based on a polynomial root approximation method
known as Horner scheme [10]. We won’t explain the math-
ematical background of Horner scheme, just how it can be
applied to our problem [11]. Let be A = (ai)i∈[0..22] the
mantissa of the seed and X the mantissa of the unknown
operand. In order to process A×X , we construct the sequence
(ci)i∈[0..N−1], N being the number of set bits in A, containing
the distances from right to left between a set bit and its
closest next one. Then we compute the terms of the sequence
(Xi)i∈[0..N] described in Equation 1, so that XN will be the
result of the multiplication.

(Xi)i∈[0...N]

{
X0 = X
Xi = Xi−1 >> ci−1 +X ∀i ∈ [1 . . . N − 1]
XN = XN−1 >> cN−1

(1)
Actually, other algorithms could have been run to further

improve optimization, such as repeating-pattern recognition
and Common Subexpression Elimination (CSE). However,
they turned out to be too greedy compared with either overhead
recovering or memory footprint. The implementation of the
Horner scheme using deGoal is described in Algorithm 1.

3

ALGORITHM 1: Floating-Point Multiplication with Horner scheme
Input: Floating-point operands M and X to be multiplied (M is

known, X is unknown).
Output: The result M ×X of the multiplication.
i← 0;
detection← 1;
result← X;
while not (mantissa(M) && (1� i)) do

i← i+ 1;
end
for i← i+ 1 to len(mantissa(M)) do

if mantissa(M) && (1� i) then
result← (result� detection) +X;
detection← 1;

end
else

detection← detection+ 1;
end

end
result← (result� detection);
return result

C. Adaptation of kernel performance vs. precision

In many applications, computation speed and energy effi-
ciency prevail on precision. Short computation chains with
limited propagation of errors, critical energy-saving, or com-
putation based on inaccurate sensors, are prime examples of
such case. Using mantissa truncation, our algorithm enables to
adjust precision according to the desired performance: the less
mantissa is treated, the less accurate but the fastest the function
will be. In this article, a X-bits truncation denotes a discard of
23−X bits, namely only X bits of the mantissa are processed.
In order to measure the error introduced by truncation, we use
percent error [12]. Percent error is defined by Equations 2, x̂
is the approximate value resulting from the processing of our
kernel, and x the theoretical floating point value, namely the
value computed by the standard algorithm.

perr =
|x̂− x|
|x|

× 100 (2)

IV. RUNTIME PERFORMANCE

A. Target Architecture

We used the microcontroller MSP430-G2553 from Texas
Instruments, an ultra-low power 16-bit RISC microprocessor
with 27 core instructions and 7 addressing modes. The de-
velopment platform is fitted with 16 kB of flash and only
512 bytes of RAM. We chose such as minimal platform to
illustrate how fair results can be obtained on minimalist archi-
tectures with limited memory resources, because they are often
used in specific technologies prevailing autonomy and number
of units over raw computation power, such as sensor networks.
A full cross-compilation toolchain is provided for compiling,
debugging and flashing the program into flash memory. We use
is the gcc toolchain msp430-gcc version 4.6.3. All our ex-
amples have been compiled using -Os -fdata-sections

-ffunction-sections --gc-sections options. Op-
tion -O3 has been tested against -Os to ensure that -Os gives
equal or better results than -O3.

B. Setup for the Measurement of Execution Times
We describe now the configuration of the MSP430 in order

to perform measurements of execution times. We set up clock
frequency to 1 Mhz and turned off the watchdogs. A timer
is launched at the same frequency than the CPU so that it
can provide a cycle-accurate value of time. This accuracy
has been checked by setting events on GPIO and monitoring
their activity with an oscilloscope. A UART driver performs
communication with a computer.

For our experimental setup to be valid, we needed to ensure
there is no difference in execution times between code residing
in RAM and code residing in flash, because our optimized
code is generated into RAM, while the reference code from
gcc we bench against is executed from flash. Indeed, programs
can be executed in-place from flash memory on our target
platform [13]. The clock frequency of the microcontroller is
set to 1 MHz so that memory fetches from flash are hidden in
one processor cycle.

By recoding manually exact copies of gcc routines such
as integer multiplication and division, we confirmed that
execution times from RAM and from flash were the same.

We also measured that kernel execution times never varies
with same data entries. Indeed, our platform has no OS,
virtualization support, branch predictors, cache memories and
so on. Interrupts are disabled during kernel executions, so that
interruption routines used in the platform, such as UART han-
dlers, would not interfere with our measures of the execution
time.

C. Performance Metrics
We base our results on three metrics.

number of generated instructions: The number of gen-
erated instructions is monitored to ensure that our algorithm
isn’t too greedy and to ensure lower memory footprint (than
standard library algorithm) and no memory overflow.

speedup: Speedup is the ratio between execution times of
standard library algorithm and ours. An effective optimization
shall reveal a speedup greater than 1.

overhead recovering: Runtime code generation incurs
an execution time overhead, so it makes sense only when
saved time overcomes lost time. The overhead recovering is
the number of optimized code executions required to actually
overcome the time spent in code generation.

To formalize these notions (Equations 3, 4), tgen, tlib and
tdyn denote the execution time of respectively code generation,
standard algorithm and optimized algorithm. N denotes over-
head recovering. We assume here tlib > tdyn as there would
be no point in generating a function having same or lower
performance than gcc implementation.

speedup =
tlib
tdyn

(3) N =
tgen

tlib − tdyn
(4)

Actually, the number of generated instructions is a tricky
metric, because it depends on precise application constraints.

4

min max mean SD
nb of instructions 38 132 106.4 9.38

ratio (%) 56.33 73.58 68.88 51.13
speedup 9.29 20.12 10.32 1.09

overhead recovering 3.28 3.58 3.46 0.04

Fig. 2. Floating-Point Multiplication Results

deGoal memory footprint is the sum of dynamically generated
code (the multiplication routine) and statically loaded code
(the compilette). Runtime code generation has a limited appli-
cation spectrum, as overhead recovering requires seeds to be
unchanged for some executions. As a result, compilette might
not substitute standard library algorithms but act as a sidekick
triggered when input data can afford optimization. Thus, a
relevant metric is closely tied to the application requirements.
If generated instructions are to be stored in RAM, and flash is
big enough not to worry about, then the number of generated
instructions is a fair metric and we target a memory footprint
shrinkage. On the contrary, if the overall memory footprint
including both flash and RAM is under heavy constraints
then a reasonable memory footprint overhead is at stake.
Thenceforward, we will focus both on the raw number of
generated instructions and the memory footprint overhead.
Considering this overhead as a shrinkage (for standard library
substitution) or an increase (for standard library support) is up
to the developer. This memory footprint overhead is clarified
in Equation 5, where nbinsn denotes the number of generated
instructions, scompilette the compilette size, slibgcc the code
size of standard library floating-point multiplication and ratio
the percentage of our code compared to standard library.

ratio =
scompilette+ nbinsn

slibgcc
× 100 (5)

D. Runtime efficiency

To measure the performance of our algorithm we pro-
cessed four hundreds multiplications of two randomly-picked
operands, one of them being the seed of the partial application.
We processed three special seeds corresponding to the worst,
average and best case scenarios, respectively being full-set, a
half-set and an empty mantissa. Thus, best and worst case will
provide extreme measures, namely minimum and maximum
values. For each multiplication, we recorded the operand,
the number of instructions generated, the time of generation
and static/dynamic execution (see Section IV-C for definition)
so that we could deduce speedup and overhead recovering.
Table 2 describes the results obtained for the experimentation.
For each metric, we focused on two sets of indicators.

minimum and maximum: Because of small memory sizes,
too heavy code could result in stack overflows, since our
kernels are currently generated in RAM. Extreme values are
monitored to prevent such issues.

mean and standard deviation (SD): They are standards
in statistical analysis, providing a fair first idea of the result
distribution.

E. Performance of the generated kernels
We measure the variation of error with truncation from 0 to

23 bits on 4000 samples per truncation level (Figure 3(a)).
The mean of speedup and kernel size are measured too
(Figure 3(b)).

Besides, we extract from bytecode static sizes needed to
evaluate memory footprint: the compilette size is 284 bytes
long while the code size of standard library floating-point
multiplication is 544 bytes long, leaving 260 bytes free for
runtime-generated code before deGoal memory footprint ex-
ceeds standard library floating-point multiplication memory
footprint.

Our dynamic algorithm accelerates computation up to
2012 % without any loss of accuracy relative to standard
library results, and produces a binary code size (compilette+
multiplication) averaging 69 % the standard algorithm size.

Considering error ≤ 2−t where t is the position of the
most significant truncated bit, and logb(x) = loga(x)

loga(b)
, the

error quite follows a linear tendency in (x, log10(y)) space
(see Figure3(b)) [12].

We can see that the mantissa can be truncated up to 7 bits
without much negative impact on accuracy (less than 1 %
of error), the upper quartile being at 0.2 %). Meanwhile,
this truncation more than halves the number of generated
instructions and reduces the mean size ratio by more than
10 %. As for speedup, 4-bit truncation enhanced its mean value
up to 1500 %.

F. Discussion
Our algorithm clearly gives better results in all aspects of

performance: speedup, energy efficiency and memory footprint
(in the understanding discussed in Section IV-C). The low
overhead recovering enables to use it easily every time an
operand remains constant for more than three executions.
Moreover, performance is never going down standard imple-
mentation’s one because a) standard deviation assures major
part of values are close to the mean; b) even extreme values
(minimum and maximum) give fair performance features;
c) energy efficiency is assured: optimization saves battery life
by reducing the number of instructions the CPU executes.
Indeed, memory and stack accesses are costly in energy and
cycles, but associated instructions are rarer in our generated
code than in standard library, and our code is lighter, so it
necessarily heads to better energy efficiency.

Mean and standard deviation provide a fair idea of reachable
performance, but it is entirely relevant only for normal law
distribution. We observe a normal distribution for the number
of generated instructions (not detailed in this paper for the sake
of brevity). Overhead recovering is in the interval [3.28, 3.58]:
the extra computation cost required by the runtime code
generation is always reached after only 4 executions of the
generated kernel. As for speedup, we can see in Figure 3(d)
that the distribution is not centered on the mean, as it reveals
local optima around 9.76, 10.66, 11.30 and 19.6. In the
worst case scenario, speedups around 9.76 are the likeliest.
Performance tuning further improves reachable speedup and
memory footprint cuts providing low percent error results so

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
truncation

5

10

15

20

25

30
sp

ee
du

p
fa

ct
or

mean
±σ
±3σ

(a) speedup variation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
truncation

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

pe
rc

en
t e

rr
or

(b) error variation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
truncation

20

40

60

80

100

120

140

nu
m

be
r o

f g
en

er
at

ed
 in

st
ru

ct
io

ns

mean
±σ
±3σ

(c) size variation

8 10 12 14 16 18 20 22
speedup

0

100

200

300

400

500

600

oc
cu

re
nc

e

(d) speedup distribution

Fig. 3. Performance metrics for the kernel tuning of floating-point multiplication

that the design can perfectly match with variable performance
requirements.

V. REAL CASE : FIR OPTIMIZATION

A. Motivation

Previous sections highlight achievable improvement on
floating-point multiplication. However, an application seldom
includes a unique operation. This section introduces a real
case of application, focusing on a low-pass Infinite Impulse
Response filter implementation (IIR filter).

Wireless sensor networks are primitive systems on both
software and hardware matters. They are mainly used for
retrieving and sending raw data from sensors to a base station.
As they increasingly become widespread, developers now want
them to perform a few processing in order to reduce the cost

of over-the-air communication [14]. Data filtering, erroneous
measure handling and data encryption are prime examples of
such new needs.

An inherent problem of physical measurement is error
injection. Sensor inaccuracy, algorithmic errors such as col-
lisions on shared resources, biased scheduling, overflows, and
spatial/temporal site perturbation (fluctuating energy supply,
intense electromagnetic field, vibrations and extreme condi-
tions) are possible origins of such errors. As a result, these
data must be filtered to provide clean and treatable signals
(data cleaning). For our purpose, we choose a low-pass IIR
filter, which interest shall appears on noised signal filtering.

B. Target platform
We ran our experiment on a Zolertia Z1, a platform heavily

used in sensor networks and fitted with a MSP430-F2617,

6

precision min mean max SD
maximal 7.4 50.5 57.7 9.3
average 12.0 52.3 59.7 9.3

minimal 34.7 56.3 64.0 5.3

Fig. 4. Speedup of optimized IIR filter

a second generation model of MSP430 processors. Mem-
ory resources are far more comfortable than those of its
predecessors, as they include 8 kB of RAM and no less
than 92 kB of FLASH. Combining both advantages of low-
power consumption and fair hardware architecture (includ-
ing for instance a 16 × 16 integer hardware multiplier), the
MSP430-F2617 enables the design of smart applications for
the Internet of Things (IoT).

An operating system is often embedded into the platform.
ContikiOS is an open source operating system designed for
tiny, low-cost, battery-operated and low-power systems. It
provides memory allocation, full IP networking, 6LowPan,
hardware platform handling, protothreading and a bunch of
useful tools for developers such as UART communication
drivers and real-time timers for performance measuring.

C. Low-pass filter
The general pattern of a IIR filters is described in Equa-

tion 6.

H(z) =

∑N
i=0 aiz

−i∑M
i=0 biz

−i
(6)

Consequently, next sample processing mainly consists in ad-
dition/subtraction, multiplication and memory accesses. Mul-
tiplication code will be optimized for coefficients (ai)i∈[0..N]

and (bi)i∈[0..M], providing a flexible filter whose coefficients
can be set directly at runtime to adapt various sets of data. Such
a runtime-generated filter actually becomes a multi-purpose
filter enable to respond several requirements without any need
of dedicated hardware or hard software reconfiguration.

D. Results
For our experiment, we chose the filter described in Equa-

tion 7. It features a bandwidth up to 500 Hz with a notch over
1 kHz, a 2dB mitigation in bandwidth and 20dB mitigation
in notch band. We gave this filter a signal composed of two
sinusoids in addition, a 250 Hz one with an amplitude of 1,
and a 1.5 kHz with an amplitude of 0.5. The sample frequency
is 4 kHz. The resulting filter is explained in Equation 7, and
underwent the optimization process for all possible accuracy
levels.

H(z) =
0.0408z + 0.1224z−1 + 0.1224z−2 + 0.0408z−3

−1.2978z + 0.7875z−1 − 0.1632z−2
(7)

The speedup experimental results (Figure 4) focus on min-
imal, average and maximal accuracy to highlight speedup
boundaries. Optimization is always successful and fits with
our previous discussion (see Section IV-F). Focusing on mean
values, our optimized application reaches a 50 % speedup.

Because of the significant time spent out of the kernel, the
precision variation doesn’t trigger a dramatic improvement in
speedup values. However, such slight extra savings in time and
energy can benefit developers considering targeted platforms
are long-term autonomous systems, meaning any saving could
have a substantial impact on the overall life expectancy.

As highlighted in Section IV-E, the number of generated
instructions is drastically decreased by mantissa truncation,
more than halving dynamic code size. With no truncation,
generated code is 973 bytes long. With truncation, it decreases
to 357 bytes.

Thus, our application example illustrates how our tool can
adapt both application/platform memory and energy specifica-
tions.

VI. SUMMARY

This article presents a new algorithm for floating-point
arithmetic leveraging runtime code generation. We use our
tool called deGoal to build at runtime light and fast routines
for software FPU emulation. We are able to improve per-
formance up to 2012 % producing a code half the size of
the FPU emulation algorithm of gcc. On a real application,
our tool demonstrates speedup up to 50 % and introduces
features enabling to tune performance according to the specific
requirements of the application.

REFERENCES

[1] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox, “Design of the java hotspot client compiler for java 6,”
ACM TACO, no. 1, May 2008.

[2] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO’04, 2004.

[3] S. Thibault, C. Consel, J. Lawall, R. Marlet, and G. Muller, “Static and
dynamic program compilation by interpreter specialization,” Higher-
Order and Symbolic Computation, vol. 13, no. 3, pp. 161–178, 2000.

[4] M. Leone and P. Lee, “Dynamic specialization in the fabius system,”
ACM Comput. Surv., vol. 30, 1998.

[5] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[6] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” 1991.

[7] A. W. Brown, P. H. J. Kelly, and W. Luk, “Profile-directed speculative
optimization of reconfigurable floating point data paths.”

[8] C. H. Ho, C. W. Yu, P. Leong, W. Luk, and S. J. E. Wilton, “Floating-
point fpga: Architecture and modeling,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 17, no. 12, pp. 1709–1718,
2009.

[9] D. Couroussé and H.-P. Charles, “Dynamic code generation: An experi-
ment on matrix multiplication,” in Proceedings of the Work-in-Progress
Session, LCTES, 2012.

[10] K. Venkat, “Efficient multiplication and division using msp430,” Tex-
asInstrument, Application Report SLAA329, 2006.

[11] D. E.Knuth, Seminumerical Algorithms Vol.2, The Art of Computer
Programming. Addison Wesley, 2000.

[12] M. Gilli, “Methode numerique,” Department of Econometrie, University
of Geneve, Application Report, 2006.

[13] T. Instrument, “Msp430x2xx family user’s guide,” Tech. Rep. Slau144i,
January 2012.

[14] P. Gupta and P. R. Kumar, “Critical power for asymptotic connectivity
in wireless networks,” 1998, pp. 547–566.

