COGLIO

Deliverable D1.1.1

Specification of the tool, first release

Editor
Authors

Version
Date
CEA ref.

Copyright

Jean-Louis Lanet

by alphabetical order:
Damien Couroussé, CEA
Jean-Louis Lanet, XLIM
Hassan Noura, CEA

Bruno Robisson, ENSMSE

Revision: 78
Fri, 23 May 2014 15:23:59 +0200
V13DACLEO14 — 14-0342

ANR COGITO ANR-13-INSE-0006-01

mailto:jean-louis.lanet@unilim.fr

R PROJECT COGITO
N DELIVERABLE D1.1.1

Contents
(1 Executive Summaryj| 4
[2- Threats against Smart Cards| 5
2.1 Hardware Attacksl o
2.2 Logical Attacks| 9
3 Current countermeasures embedded into smart cards| 12
B.1 Hardware countermeasuresl 12
B2 Software countermeasures] 12
(3.3 Synthests| 14
4 deGoal: code polymorphism for embedded systems| 16
4.1 Sketching deGoal|. 16
4.2 Components for code generation| Lo 16
4.3 Application building, runtime code generation and execution| 18
4.4 The Cdg language| L 19
4.5 Main properties of deGoal backends for code generation| 21
5 Use of deGoal in the context of COGITOI 23
6 References| 25
List of Figures
(1 Inspection of a microcontroler| L oL 6
[2 Electromagnetic micro-probes (courtesy of the Micropacks platform at GARDANNE, |
[France) e 7
[3 Laser bench (courtesy of the Micropacks plattorm at GARDANNE, France)|
4 Simplified principles of operation of a dynamic compiler and of a compilette]. 17
5 TIllustration of deGoal workflowl 18
(6 Simple integer multiplication; implementationin C 20
[/ Simple integer multiplication; machine code corresponding to the C version (arm- |
[thumb ISA)| 20
(8 Simple integer multiplication; implementation in a compilette] 21
[9 Simple integer multiplication; output of the compilette multiply_compile for val=42|. 21
(10 Update of deGoal workflow according to the objectives of the COGITO project| . . . 24

29

R PROJECT COGITO
N DELIVERABLE D1.1.1

List of Tables

(1 Existing Fault Modell o 9

PRrROJECT COGITO
DELIVERABLE D1.1.1

1 Executive Summary

This report focuses on the use of runtime code generation techniques in the context of secure devices.
Its objective is to provide preliminary elements in order to support the core objective of the COGITO
project: demonstrate the applicability of runtime code generation techniques for security purposes.

In the first part of this report, we describe various attacks targeting smart cards, both in terms of
hardware based attacks, logical attacks, and mixed attacks (section @) In mixed attacks, the fault
injection is an enabler for logical attacks. Then, we present most of the countermeasures related to
the scope of the project against these attacks and we bring to the fore their limits (section [3). We
propose some clues for improving the resistance to some attacks that are less covered by current
countermeasures, in particular code polymorphism.

In the second part of the document, we introduce deGoal as an enabling technology to improve
the security of the embedded systems. The original purpose of this technology is to bring performance
improvements in terms of execution time or energy consumption for computing systems. Considering
that deGoal is well suited for embedded systems, especially systems with small memory resources
and low computing capabilities such as the systems usually used in secured applications, we assume
that it is possible to retarget this tool for security purposes. In this report we present the functionalities
of deGoal (sectiond), and the modifications targeted in the context of COGITO to reach the objectives
of the project (section [5).

This deliverable is intended as the first release of a study report, due to the end of the COGITO
projet, entitled "final specification of the tool and guidelines for future implementations (D1.1.3)".

l R PrOJECT COGITO
DELIVERABLE D1.1.1

2 Threats against Smart Cards

A smart card usually contains a microprocessor and various types of memories: RAM (for runtime
data and OS stacks), ROM (in which the operating system and the romized applications are stored),
and EEPROM (to store the persistent data). However, due to significant size constraints of the chip,
the amount of memory is small. Most smart cards on the market today have at most 5 KB of RAM, 256
KB of ROM, and 256 KB of EEPROM. A smart card can be viewed as a secure data container, since
it securely stores data and it is securely used during short transactions. Maintaining a sufficient level
of security relies first on the underlying hardware. To resist probing an internal bus, all components
(memory, CPU, crypto-processor, efc.) are on the same chip which is embedded with sensors covered
by a resin. Such sensors (light sensors, heat sensors, voltage sensors, efc.) are used to disable the card
when it is physically attacked. The software is the second security barrier. The embedded programs
are usually designed neither for returning nor modifying sensitive information without guaranty that
the operation is authorized.

Smart cards are devices prone to attacks in order to gain access to services or assets stored by the
card. Several means have been used to retrieve these valuable information and recently fault injection
appears to be the most efficient. Thus, smart card manufacturers try to design countermeasures to
embed in their operating system to prevent such attacks. Often solutions are based on dedicated code
at the applicative level.

We present in the following sections several attacks that target the software only and other attacks
based on hardware. In this latter we can disgusting between passive attacks which acquire information
by monitoring the processor activities through current or electromagnetic probes and active attacks
that modify the behaviour of the processor or memories by injecting energy into the silicon.

2.1 Hardware Attacks

Among the security threats, a very important one is certainly due to vulnerabilities of the integrated
circuits that implement cryptographic algorithms (described above). With the access to one of these
circuits, the attacker tries either to reconstruct the functionality of the circuit (reverse engineering) or
to recover cryptographic materials when the cryptographic algorithm is known (physical or hardware
cryptanalysis). Both threats share a set of techniques. The first one consists in getting information
about the chip design by direct inspection of its structure. The second one, called side channel attacks,
consists in observing some physical characteristics which are modified during the circuit’s computa-
tion. The third technique, called fault attacks, consists in disrupting the circuit’s behaviour.

2.1.1 Inspection

This inspection may be performed by using any kind of imaging techniques or by using destructive
means such as abrasion, chemical etching or focused ion beam. Figure [I] represents an integrated
circuit whose package has been opened by using chemical etching. On this Figure, several logical
blocks such as memories, numeric and analogic parts may be easily distinguished.

""""""""""""""""""" R PROJECT COGITO
, N DELIVERABLE D1.1.1
- .nfﬁ‘f'-" ﬁfh"ﬁ 3 ‘T'

A

L)

\ '\

T
ol
g &
o
X
&

?

Figure 1: Inspection of a microcontroler

2.1.2 Side Channel Attacks

Side channel analysis exploits the fact that some physical values or ’side channels’ (such as power
consumption, electromagnetic radiation, computation time or even light emission) of a circuit depend
on the key value SMP07]. A rougher technique consists in measuring directly some
key-related internal computations by using micro-probing techniques. Figure 2] represents several
micro-probes which are used to measure the electromagnetic field created by an integrated circuit.

There are two subcategories of key recovering techniques based on side channel measurements.
The first one, called DPA-like, consists in building a set of mathematical models (i.e. mathematical
formul®) from a priori knowledge about the circuit. Each model is associated with an hypothesis on
the value of the key. Then, the models are compared with measurements. The model which matches
the best with measurements is generally associated with the right key hypothesis. The second kind of
side channel attacks needs a profiling step on another circuit. This circuit is supposed to be identical
to the target and the attacker is supposed to be able to set the key value. In this case, the profiling step
is used either to improve the model a priori (stochastic attacks) or to build a statistical model only
based on measurements (template attacks).

2.1.3 Fault Attacks

In this subsection, we will give an overview over actual physical methods to induce faults. This
will show that there are numerous ways to induce faults into physical devices. Fault attack is an
old research field. Research in avionics or space travel brought to the fore that cosmic rays can flip
single bits in the memory of an electronic device [ZCM™96]]. Such faults are still an issue until now
for such devices. In the smart card field, researches focused on power spikes, clock glitches and
optical attacks. A smart card is a portable device without any own power supply neither clock and
thus requires a smart card reader providing power and clock sources in order to work. The reader
can be replaced by an adversary with laboratory equipment, able of tampering with the power supply.

9

R PROJECT COGITO
N DELIVERABLE D1.1.1

Figure 2: FElectromagnetic micro-probes (courtesy of the Micropacks platform at GARDANNE,
France)

With short variations of the power supply, which are called spikes, one can induce errors into the
computation of the smart card. Spikes allow to induce memory faults but also faults in the execution
of a program. This latter, which aims at confusing the program counter, can cause conditionals to
work improperly, loop counters to be decreased and arbitrary instructions to be executed. The reader
may provide the card with a clock signal, which incorporates short deviations from the standard
signal, which are beyond the required tolerance bounds. Such signals are called glitches. Glitches
can be defined by a range of different parameters and they can be used to induce memory faults as
well as to cause a faulty execution behaviour. Hence, the possible effects are the same as for spike
attacks. If the chip is unpacked, such that the silicon layer is visible, it is possible to use a laser to
induce perturbation in the memory cells (Figure [3] represents a laser bench which is used to create
faults in an integrated circuit. This equipment is mainly constituted of laser sources, of a microscope
with different lenses, an X-Y table and an oscilloscope). These memory cells, i.e., EEPROM memory
and semiconductor transistors, have been found to be sensitive to light. This happens if the photon
energy of the applied light is transformed in electron in the semiconductor. Modern green or red
lasers can be focused on relatively small regions of a chip, such that faults can be targeted fairly well.
The last method use changes in the external electrical field and has been considered as a possible
method for inducing faults into smart cards. Here, faults are sought to be induced by placing the
device in an electromagnetic field, which may influence the transistors and memory cells. A rougher
technique consists in modifying the circuit’s operation by modifying internal computation through
micro-probes, or even modifying the circuit itself by using focused ion beam.

There are three subcategories of key recovering techniques that use the results of faults attacks.
Algorithm modifications consist either in reducing the ciphering complexity of the cryptographic
algorithm [CTO05, or in bypassing hardware or software protections. Differential Fault At-
tack (DFA), originally described in and enhanced in AMT12],
consists in retrieving the key by comparing the correct ciphertexts with faulty ones. A detailed com-
parison of DFA schemes against AES, for example, is given in [SLOI12]. To perform the third kind
of fault attacks, called safe-error attacks [JMRO7, LSGT10], the attacker does not necessarily
need pairs of correct and faulty ciphertexts but only some information about the chip’s behavior. The
protections developped against these attacks are based on fault models. Different models have been

129

' R PROJECT COGITO
N DELIVERABLE D1.1.1

Figure 3: Laser bench (courtesy of the Micropacks platform at GARDANNE, France)

proposed in the litterature.

2.1.4 Fault Model

To prevent a fault attack from happening, we need to know its effects on the smart card. Fault models
have already been discussed in details ‘Wag04]]. We describe in Table[I] the fault models in
descending order in terms of attacker power, considering that an attacker can change one byte at a
time. Several authors discuss in an attack using the precise bit error model. But it
is not realistic on current smart cards, because modern components implement hardware security on
memories like error correction and detection code or memory encryption.

In real life, an attacker physically injects energy in a memory cell to change its state. Thus and
up to the underlying technology, the memory physically takes the value 0x00 or OxFF. If memories
are encrypted, the physical value becomes a random value (more precisely a value which depends on
the data, the address, and an encryption key). To be as close as possible to the reality, we choose the
precise byte error that is the most realistic fault model. Thus, we have assumed that an attacker can:

e make a fault injection at a precise clock cycle (he can target any operation he wants),

e only set or reset a byte to 0x00 or to OxFF up to the underlying technology (berl fault type), or
he can change this byte to a random value beyond his control (random fault type),

e target any memory cell he wishes (he can target a specific variable or register).

We have defined the hypothesis concerning the attacker, then we present the countermeasures
embedded in most modern smart cards in order to detect the induced fault.

Ibit set or reset

39

Nationale dela u.u.\.u.‘I :

Table 1: Existing Fault Model

PRrROJECT COGITO
DELIVERABLE D1.1.1

Fault Model | Precision Location Timing Fault Type | Difficulty
Precise bit error bit total control | total control | bsr, random ++
Precise bit error byte total control | total control | bsr, random +
Precise bit error byte loose control | total control | bsr, random -
Precise bit error | variable no control no control random -

2.2 Logical Attacks

Logical attacks, or software attacks, aim at injecting code inside the smart card and retrieving in-
formation illegally. At a first sight, it seems that logical attacks can not be mitigated with runtime
code generation. But one of the patented countermeasures presented by Barbu [Bar12]] and improved
by [TR12] at the Java Card level consists in modifying dynamically the syntax of the byte code. The
main idea is to avoid the execution of shell code. In this section we present briefly a state of the art of
the logical attacks.

2.2.1 Ambiguity in the specification: type confusion

Erik Poll made a presentation at CARDIS’08 about attacks on smart cards. In his paper [HPO4], he did
a quick overview of the classical attacks available on smart cards and gave some counter-measures.
He explained the different kinds of attacks and the associated counter-measures. He described four
methods (1) CAP file manipulation, (2) Fault injection, (3) Shareable interfaces mechanisms abuse
and (4) Transaction Mechanisms abuse.

CAP file manipulation and Fault injection The goal of CAP file manipulation (1) is to modify the
CAP file after the compilation step to bypass the Byte Code Verifier (BCV). This is an easy attack,
simple to set up but it can be mitigated using a code analysis step (byte code verification, rules checker,
etc.). It has been demonstrated by Barbu in his thesis [Barl2] that passing a BCV verification is not
enough. What you execute is not always what you verify. The verification is done during the load
and the code stored inside the card can be latter modified using a perturbation. This comes from the
solution (2), the fault injection, which sort of attack is efficient but quite difficult and expensive.

Shareable interfaces mechanisms abuse This attack is based on separate compilation unit. The
idea to abuse shareable interfaces is really interesting and can lead tricking the virtual machine. The
main goal is to have type confusion without the need to modify CAP files. To do that, the authors
of [HPO4] demonstrate this possibility by creating two applets which communicate using the shareable
interface mechanism. To create a type confusion, each of the applets use a different type of array to
exchange data. The first applet is compiled proposing a service with an array of bytes as parameter.
The second applet is compiled using an array of shorts as parameter. Then the second will access
more byte than expected by the first one. During compilation or at load time, there is no way for the
BCV to detect such a problem.

\ R PROJECT COGITO
,‘ \ DELIVERABLE D1.1.1

Transaction Mechanisms abuse The purpose of transaction is to provide groups of atomic opera-
tions. Of course, it is a widely used concept, like in databases, but still hard to implement. In addition
to atomicity, by definition, the rollback mechanism should also deallocate any objects allocated dur-
ing an aborted transaction, and should void references to such objects. However, Erik Poll found
some cases where the card keeps the references of objects allocated during the transaction even after
a rollback, showing that the confidentiality and the integrity of the data can be breached.

2.2.2 The specification is correct but the constraints provide implementation choices: EMAN1
and EMAN?2

Previous attacks aims to obtain illegally data. In this category the attacks aim at gaining control of
the program and to mutate the code, i.e. allowing to execute arbitrary code. The executed code is
different from the loaded code.

EMANI1: A self-modify mutant application. J. Iguchi-Cartigny et al. explained in [[CL10] the
way to execute some malicious byte codes. The idea of this attack is to abuse the firewall mechanism
with the unchecked instructions on static operations (as getstatic, putstatic and invokestatic)
to call a malicious byte code contained in a Java Card applet. The attack is split it in three steps: (1)
First, they try to obtain an address of an array which will contain latter a shell code and the this
reference address (in order to get access to the instructions array). For that, a Java Card function is
modified in order to push, on the top of the Java Card stack, the reference of the array which is given
in the function parameter. When this reference is pushed, they noped each instructions between the
pushed reference and the function that returns the value pushed on the top of the stack. (2) Next, to
read and write in the memory, the getstatic and putstatic instructions are used. The Java Card
firewall does not check their parameters. (3) Finally, with the modification of its instruction, in a
malicious CAP file, the parameter of invokestatic instruction may redirect the control flow to the
array that contain the shell code.

EMAN?2: A Java Card Stack Overflow At CARDIS 2011, G. Bouffard et al. described, in [BICL11]],
two methods to change the Java Card control flow graph. The first one, EMAN2, modifies the return
address of the current function stored in the Java Card stack header. Most of the JCVM implentations
store the return address between the locals area and the stack area. There is two possibilities to modify
the return address by an underflow (from the stack) or an overflow (from the locals). Changing this
address by an array address leads the possibility to execute any arbitrary shell code. To modify this
address with an overflow, they changed the parameter of the sstore instruction i.e. they used a non
defined local index that refer to the return address.

Recently, Faugeron [Faul3|] presented a way to fool the Java Card runtime based on the dup_x
instruction. This instruction duplicates the top of operands stack words and inserts them below. This
instruction duplicates the top k of the operand stack n elements down the stack. This instruction takes
two parameters encoded on 1 byte where k is the denotes the high nibble, describing the number of
words to duplicate, and n denotes the low nibble describing where the duplicated words are inserted.
Since the Java Card operands stack does not contain enough elements, the runtime uses the system
data as words for the dup_x instruction. Thus, an attacker can shift the value of the frame header by
a custom words pushed on the stack.

10129

x R PROJECT COGITO
,‘, DELIVERABLE D1.1.1

Another implementation of this attack from the top of stack can exploit the swap_x instruction.
This instruction swaps words on the top of the operand stack. The swap_x takes as parameters the
value m,n and swaps m words with n words. If the stack contains less than m+n words, the swap_x
instruction will trigger a stack underflow. With the appropriate values, the frame header can be over-
written. As one can see in [Faul3], this attack only works on a card which supports the integer type.

2.2.3 Combined attacks

Logical attacks can be leveraged with fault attacks. This latter can be used to activate a logical attack.
The next section explain this sort of hardware attack we just introduce here the main idea. Faults can
be injected by some physical attacks by exposing the device to some sort of physical stress [SA02],
but researchers [ZCM T 96] also highlighted the fact that cosmic rays can flip single bits in the memory
of an electronic device.

Fault attacks aim at modifying the behaviour of the device, for example by changing values in
memory cells, transmitting different signals through bus lines, or damaging the structural elements.
These errors can generate different versions of a program by changing some instructions, interpreting
operands as instructions, branching to other (or invalid) labels and so on. These perturbations can have
various effects on the chip registers (program counter, stack pointer), or on the memories (variables
and code can change). Mainly, it would enable an attacker to execute an operation beyond his rights,
or to access secret data in the smart card. Fault attacks is an old research field mainly in avionics or
space domains.

Barbu et al. proposed [BTGI10] an attack that uses a precise model of byte errors. An applet
gets installed on the card after it has been checked by an embedded BCV. It is then considered as a
structurally valid applet. The aim of the attack is to create a type confusion to forge a reference of
an object. The authors also explained the principle of instance confusion, similar to the idea of type
confusion where the objective is to confuse an instance of object A to an object B by dynamically
inducing a fault using a laser beam during the checkcast instruction. In the case of this study, the
attack was simplified as compared to a real case, considering the fact that the authors also designed
the target platform, which provided them a complete knowledge of the JCVM internals.

Following the idea of Barbu et al., but with a black box approach, Bouffard et al. [BICLI11]
designed a valid applet that contains a malicious function. Their attack is entitled EMAN4. After
the building step by the Java Card toolchain, a valid byte code is obtained. The goto_w instruction
provides the jump to the beginning of the loop. Here, 0xFF19 is a signed number used to define the
destination offset of the goto_w instruction. A laser beam may set or reset the most significant byte of
the goto_w offset. The authors succeeded to shift the most significant byte of the goto_w parameter
in order to jump outside the method and change the execution flow by executing another fragment of
code.

11729

R PRrROJECT COGITO
,‘ \ DELIVERABLE D1.1.1

3 Current countermeasures embedded into smart cards

3.1 Hardware countermeasures

Many hardware protections have therefore been proposed to counter hardware attacks. Some pro-
tections (hereafter referred as ’sensors’) give information about the state of the system either by
measuring the light [DPBP"13], the voltage [LZ14], the frequency or the temperature of the chip
or by detecting errors during computations. This detection is generally based on spatial redundancy
(i.e. making the same computation several times simultaneously), temporal redundancy (i.e. doing
the same computation several times) or information redundancy (i.e. doing a computation with more
bits than required) [MKRM11, JMRO7, NRADI11]. Several mechanisms are also proposed to detect
a modification of the execution flow of a software. In some cases, an additional hardware block is
dedicated to this task [ARRJOS, MW10]. To reduce sensitivity to side channel attacks, 'noise’ has
been added to the power consumption, for example, by using an internal clock, by randomizing the
order of the instructions, by adding dummy operations or by masking the internal computations that
can be predicted by the attacker [CGO1, [HOMO06, RPD09, MDEF 09, [CK10]. Another way to reduce
sensitivity to side channel attacks consists in reducing the correlation between physical values (such
as power consumption or electromagnetic radiation) and the data processed, for example, by using
balanced data encoding and balanced place and route [GSF™10, DVDF"11]], by using power filters
or electromagnetic shields [ShaOO]. At last, some countermeasures modify the functional behavior
of the circuit in case of attacks. Such reactions may consist, for example, in temporarily stopping
the communication with the reader (the card *mutes’) and/or resetting parts of the running software.
The ultimate reaction consists in permanently destroying (i.e. killing) all the data (including sensitive
information) stored in the chip.

Using only hardware countermeasures has two drawbacks. Highly reliable countermeasures are
very expensive and low cost countermeasures only detect specific attacks. Since new fault attacks are
being developed frequently these days, detecting only currently known forms of physical tampering is
not sufficient and for long term applications (an e-passport must be valid for 10 years) it is definitely
not sufficient.

3.2 Software countermeasures

Software countermeasures are introduced at different stages of the development process; their purpose
is to strengthen the application code against fault injection attacks. Current approaches for software
countermeasures include checksums, randomization, masking, variable redundancy, and counters.
Software countermeasures can be classified by their end purpose:

e Cryptographic countermeasures: better implementation of the cryptographic algorithm like
RSA (which is the most frequently used public key algorithm in smart cards), AES, and hash
functions (e.g. the family of SHA functions).

e Applicative countermeasures only modify the application with the objective to provide resis-
tance to fault injection. Generally, this class produces application with a greater size. Because
beside the functional code (the code that process data), we have the security code and the data
structure for enforcing the security mechanism embedded in the application. Java is an inter-
preted language therefore it is slower to execute than a native language (like C or assembler),

1229

: R PROJECT COGITO
DELIVERABLE D1.1.1

so this category of countermeasures suffers of bad execution time and increases the complexity
of application development.

e System countermeasures harden the system by checking that applications are executing in a safe
environment. The main advantage is that the system and the protections are stored in the ROM,
which is a less critical resource than the EEPROM and cannot be attacked thanks to checksum
mechanisms that allow to identify modification of data that are stored in the ROM. Thus, it is
easier to deal with integration of the security data structures and code in the system. Another
thing that must be considered is the CPU overhead, if we add some treatments to the functional
code.

COGITO aims to improve system countermeasures. We develop below the known countermea-
sures embedded in some smart cards.

3.2.1 Code obfuscation

We consider code obfuscation as a general protection. We use the term general to express the fact
that, whatever the attack, one key parameter of the JIL quotation [JILO6] is the knowledge of the
attacker about the hardware and the software implementation of security primitives: the more the
attacker needs such a knowledge to mount an effective attack, the higher the overall security level is.
Thus, code obfuscation (i.e. making code execution harder to interpret and so, knowledge about the
circuit implementation harder to recover) is also an effective means to secure the component.

In order to protect the confidentiality of programs, numerous techniques for program obfuscation
and for the rewriting of binary code have been developed: random jumps in the program instructions,
function pointers, concatenation of procedures, etc. [CTL97]. At the theoretical level, it was demon-
strated by Barak et al. that there is no general obfuscation technique that applies to any code function;
in other words, there is no “universal obfuscating tool” [BGIT01]]. However, nothing in this theory
forbids the existence of ad hoc obfuscation techniques able to target the mostly used cryptographic al-
gorithms such as DES, AES, RSA, ECC. As a matter of fact, many obfuscating methods have recently
been published for cryptography, but all of them revealed being weak. For example, an obfuscation
method for AES has been proposed by Chow et al. [CEJOO3b], but it was cryptanalysed only two
years later [BGECO04]. Similarly, an obfuscated implementation was proposed for DES [[CEJOQ3al]
and cryptanalysed in 2007 [WMGPO7]].

3.2.2 Dynamic Syntax Interpretation

In his PhD thesis, G. Barbu [Barl2]] proposed a countermeasure that prevents the execution of ma-
licious bytecode. His idea is to mask each instruction during the installation step. To achieve this,
each Java Card instruction ins performs a xor with the K,,, key. The hidden instructions (and their
parameters) perform the following operation:

iNShidden = NS D Kyor

If an attack such as EMAN 2 succeeds, the attacker cannot execute her malicious byte code with-
out the knowledge of the K,,, key. To find the xor key, she only has to change the CFG of the program
to a return instruction. As defined by the Java Card specification [Oralll], the associated opcode is

13129

R PROJECT COGITO
,‘, DELIVERABLE D1.1.1

0x7A. With a 1-byte xor key, this instruction may have 256 possibles values. A brute force attack
offers the way to find the xor key.

To improve his countermeasure, we add the value of the Java Pointer Counter (jpc) to perform of
the hidden instruction. This compute becomes:

inshidden =ins® Kxor ¥ ij

The jpc value depending of where each instruction is stored in the smart card memory. A modi-
fication of the CFG prevents the next instruction to be executed from a correct uncypher. Without the
knowledge of where each instruction is stored in the EEPROM memory, an attacker will not have the
possibility to execute some malicious byte code by the attacked JCVM.

3.2.3 Code polymorphism

In our point of view, the ultimate countermeasure for program obfuscation is the ability to modify
online and dynamically the contents of a binary program. To the best of our knowledge, we found
only two papers that try to implement such a protection for security and cryptography.

Amarilli et al. [AMNT11]] present an implementation of self-modifying code in Scheme, which
is an Lisp-based interpreted language. They describe a model for the randomisation of operations,
both at block level and at instruction level. But their implementation is not applicable to processors
typically used in cryptographic devices because the Scheme language lacks interpreters for such small
embedded systems.

Agosta et al. [ABP12]] describe a general technique that uses a modified version of the gcc com-
piler to produce runtime code generators and apply this technique to obfuscate the implementation
of the AES. Their technique allows masking and hiding through the use of (1) instructions shuffling,
(2) generation of binary code that is functionally equivalent are the level of language expressions
(called code morphing) and (3) register renaming. They demonstrate the efficiency of their approach
for an ARM926 processor, which presents very different characteristics than the typical platforms in
secure elements in terms of computing power and of memory resources. The runtime code generators
randomize the final binary code thanks to the embedding in the runtime engine of a lot of variants
of small code fragments. The memory footprint is not detailed in the paper, but we assume it to be
fairly large and maybe incompatible with the memory resources of secure elements. Furthermore,
the overhead due to code generation is however weighty: in order to generate the code fragments
replacing the 64 eor instructions in the AES kernel, the runtime code morphing executes in 90 ms
(11,970.10° cycles at 133 MHz). Considering that their code morphing technique produces in aver-
age 6 instructions per morphed original instruction (4 instructions in average, plus a load/store pair to
handle the clobbering of a temporary register), the cost runtime generation averages to 187.103 cycles
per morphed instruction.

3.3 Synthesis

As seen in this section, the first threat lies in the many opportunities to execute shell code in a card,
thanks to the allowance of code upload in the post issuance phase. Smart card manufacturers design

14129

PRrROJECT COGITO
DELIVERABLE D1.1.1

several countermeasures, each one being specific to a given attack. The second thread is related to
reverse engineering of the embedded application. The reverse can be done at the native level or at the
virtual processor level. To the best of our knowledge, only very few countermeasures are applicable
to secure components; the only generic countermeasure targeting JavaCards is authored by Guillaume
Barbu with a dynamic syntax interpretation. Nevertheless, using side channel analysis one can easily
reverse the application or deduce the masking function. In fact, whatever the coding is, the execution
trace will remain the same allowing the attacker to deduce the masking function. The only solution
for side channel analysis would be the execution of polymorphic code because the trace could not so
easily lead to reverse the code or the scrambling function.

In the scope of the COGITO project,

e the Java interpreter will be one of the components that we target for applying runtime code
generation. Indeed, if the Java interpreter uses different execution functions for the same in-
struction, thanks to code polymorphism, this will increase the difficulty for the attacker.

e We intend to provide implementations of cryptographic primitives such as AES, using code
polymorphism achieved thanks to runtime code generation.

1529

R PRrROJECT COGITO
,‘ \ DELIVERABLE D1.1.1

4 deGoal: code polymorphism for embedded systems

4.1 Sketching deGoal

The CEA is developing a technology for runtime code generation around a tool called deGoal, which
initial motivation comes from the observation that program performance may be strongly correlated to
the characteristics of the data to process. In this section, we sketch the characteristics of deGoal and
then elaborate about its use in the context of security. For further reading about the motivation and the
use of deGoal in other contexts or application domains, refer in particular to the tutorial in [CLCI13]],
and [AC13,ICCL"14].

Before presenting in more details the possibilities for runtime code generation that this tool can
bring in secure devices, we introduce the initial design of this tool in order to clarify the design choices
and the scientific positioning in deGoal with regards to the state of the art in dynamic compilation.

Most of the times, a static compiler (such as gcc) is used to generate binary code from the original
implementation in a programming language. Because compilation is performed before the program
is run, the execution context and run-time data are not known at the time of code generation. This
means that, in order to take advantage of such information in code optimisations, one has either (1) to
assume about the characteristics of the execution context (and to provide verification mechanisms),
(2) to add extra instructions to adapt the program behavior depending on runtime data, which is known
as code specialisation, or (3) to generate the program’s machine code at run-time, after the execution
context is known. This latter solution is the core motivation for the development of deGoal: to
provide application developers with the ability to implement application kernels tunable at run-time
depending on the execution context, on the characteristics on the target processor, and furthermore on
the data to process [Chal2l].

In classical frameworks for runtime code generation, such as interpreters and dynamic compilers,
the aim is to provide a generic infrastructure for code generation, bounded by the syntactic and seman-
tic definition of a programming language. The generality of such solutions comes at the expense of an
important overhead in code generation, both in terms of memory footprint and computing power. In
deGoal, we chose a different approach: application kernels are tuned at runtime by ad hoc run-time
code generators embedded in the application (one code generator for each kernel to optimise). Each
code generator is specialised to produce the machine code of one application kernel. Syntactic and
semantic analyses are performed at the time of static compilation, and the dynamic code generators
embed only the processing intelligence that is necessary to adapt the code to generate to the proper-
ties of the data to process. As a consequence, compilettes offer very fast code generation (10 to 100
times faster than typical frameworks for runtime code interpretation or dynamic compilation), present
a very low memory footprint, can run on very small microcontroller architectures such as 8/16-bit
microcontrollers with less than 1 kB of RAM [AC13J], and are portable.

4.2 Components for code generation

The two categories of software components around which our code generation technique is organised
are called kernels and compilettes.

1629

PRrROJECT COGITO
DELIVERABLE D1.1.1

program
description

dyna

mic
data -+ : data & .
compiler ; compilette
execution context

binary program binary program
(a) dynamic compiler (b) compilette

Figure 4: Simplified principles of operation of a dynamic compiler and of a compilette

Kernel A kernel is a small portion of code, which is part of a larger application, and which is the
target of our runtime code generation setup. Our technique focuses on the optimisation at run-
time of these small parts of a larger application in order to improve the kernel’s performance.
In the context of the typical use of deGoal, good performance is understood as low execution
time, low memory footprint and low energy consumption. In the context of this project, good
performance could be understood as the capability to obtain a very large number of different
versions of the binary code while preserving the same functionality.

Compilette A compilette is designed to generate the code of one kernel at run-time. A compilette can
be understood as an ad hoc small code generator that is executed during application runtime. We
use the term compilette to underline the fact that, in order to achieve very fast code generation,
this small run-time generator does not embed all the optimisation techniques usually carried out
by a static compiler.

A compilette is not a dynamic compiler. Figure [presents an overly simplified sketch of the
working principle of compilettes, and how it compares with dynamic compilation:

e A dynamic compiler is a generic code generator (Figure 4a). It takes the description of a
program as an input, and produces machine code. Dynamic compilers target a specific pro-
gramming language, but we describe them as generic because they are able to process whatever
program description that is compliant with the specification of the targeted programming lan-
guage. The input program is most of the time represented in a simplified form called bytecode.
Bytecode is a pre-processed (or pre-compiled) program representation that can be translated
efficiently in machine instructions (interpretation), but that also contains enough information
about the input program so that is it possible to produce optimized code by dynamically com-
piling it at runtime. To the best of our knowledge, dynamic compilers are very unlikely to
perform runtime optimizations based on the knowledge of the execution context, and of the
data to process.

e On the contrary, a compilette (Figure b)) is a specialized code generator able to produce ma-
chine code for a class of kernels known before runtime. As a consequence, it does not take
the representation of a program as input. It is hence capable of more lightweight and faster
runtime code generation than dynamic compilers. A compilette is instead designed for data-
dependent code optimizations at runtime: the main input of a compilette is data, either related
to the execution context or to the data to process.

17129

PRrROJECT COGITO
DELIVERABLE D1.1.1

.cdg .C static| |runtime
- C source binary binary
- degoal - .
high-level ICOmpz.lett |comp11ett
ASM

kernel

developer |degoaltoc € compiler compilette RUN TIME

REWRITETIME STATIC _|data adaptation)
(source to source) COMPILATION
TIME

Figure 5: Illustration of deGoal workflow

4.3 Application building, runtime code generation and execution

The building and the execution of an application using deGoal consists of the following steps as
illustrated in Figure [5} writing the source code; compiling the binary code of the application and the
binary code of compilettes using static tools; generating the binary code of kernels by compilettes;
running the kernels. These steps are explained below:

Writing the source code (application development time): This task is handled by the application
developer, and/or by high-level tools. The source code of compilettes is written in specialised . cdg
files, while the rest of the application software components are written using a standard programming
language, such as C.

Generation of C source files (rewrite time): This step consists in a source-to-source transforma-
tion: the .cdg source files mixing high-level ASM instructions and standard C are translated into
standard C source files. At this phase architecture-dependent features can be introduced in the C
source files generated, for example pre-processing of register allocation and vectorization support.

Compilation of the application (static compilation time): The source code of the application
now consists in a set of standard C source files, including the source code of the compilettes. The
binary code of the application is produced by a standard C compiler. This step is the same as in the
development of a standard C application.

Generation of kernel’s binary code (run-time): At run-time, the compilette generates binary code
for the kernel(s) to optimise. This task can be executed on a processor that is different to the processor
that will later run the kernel. Furthermore, the processor executing the compilette and the processor
targeted for the execution of the kernel do not necessarily need to have the same architecture. In the
typical use of deGoal, a compilette can be run several times, for example as soon as the characteristics
of the data to process have changed, in order to re-optimize the binary code of the processing kernel.

1829

R PRrROJECT COGITO
,‘ \ DELIVERABLE D1.1.1

Kernel execution (run-time): The binary code of the kernel is executed on the target processor
(not shown in Figure [3).

In COGITO, we will re-target the original use of deGoal in order to focus on security aspects:
our objective is to exploit the flexibility brought by deGoal for runtime code generation to introduce
dynamic variability in the binary code of applications.

4.4 The Cdg language
4.4.1 Introduction

Cdg is an assembly-like DSL language. It is designed for the software implementation of compilettes:
it describes the instructions that will be generated at run-time. From the programmer’s perspective,
this represents a major paradigm shift: programming languages usually describe in a more or less
straightforward manner the instructions to be executed by the target processor, whereas Cdg describes
instructions to be generated or written into program memory during the execution of a compilette.

Compilettes are implemented by using a mix of ANSI C and Cdg instructions [Chal2, (CLC13].
The C language is used to describe the control part of the compilette that will drive code generation,
while Cdg instructions perform code generation.

The Cdg instruction set includes:

A variable length register set The instruction set uses vectorial registers with variable width and a
variable number of elements. For example, it is possible to define

Type floatvect float 64 8

in order to use any register of type floatvect as a vector of 8 elements of 64 bit floating point
values.

Classical arithmetic instructions add, sub, mul, div, but also instructions specific to the multime-
dia domain such as sad (sum of absolute differences), mma (matrix multiply and add) and FFT
butterfly. These instructions can work on registers of variable length and type.

Load and store This family of instructions supports stride description. This allows for the descrip-
tion of complex memory access patterns.

From this high-level instruction set, compilettes map the Cdg instructions to machine instructions
according to according to (1) the characteristics of the data to process, (2) the characteristics of the
execution context at the time of code generation, (3) the hardware capabilities of the target processor
, (4) execution time and/or energy consumption performance criteria. In all cases, code generation is
fast and produces efficient code.

The main purpose of Cdg being runtime code generation, two main features are of particular
importance:

1. parametrising instructions with values known at runtime only (evaluation of runtime constants),

2. use vector variables (i.e. variables describing vectors, at the opposite of scalar variables), whose
size is known at runtime only.

19129

A W N -

R PRrROJECT COGITO
,‘ \ DELIVERABLE D1.1.1

int multiply (int a, int b)
{

return (axb);

Figure 6: Simple integer multiplication; implementation in C

0001008¢c <multiply_func_classical>:
1008c¢: fb01 £000 mul . w r0, r1, r0
10090: 4770 bx 1r
10092: Dbf00 nop

Figure 7: Simple integer multiplication; machine code corresponding to the C version (arm-thumb
ISA)

4.4.2 Evaluation of runtime constants: illustration with a minimalist example

We illustrate here the evaluation of runtime constants in the Cdg language through a minimalist ex-
ample: we illustrate the use of a compilette to generate the code of a simple routine for integer
multiplication.

A naive implementation in C could be as illustrated in Figure [6] and the corresponding machine
code compiled for the arm-thumb ISA as illustrated in Figure

To generate at runtime machine code that is functionally equivalent, we can implement a com-
pilette as illustrated in Figure [§] The use of the Cdg language is explained in greater details in the
tutorial section in [CLC13]], but lets cover the implementation of the compilette in a few words:

e Cdg instructions are code sections enclosed by #[and]# (lines 5, 11)

e the Begin instruction (line 6) indicates where to start code generation (memory address stored
in the variable code)

e the compilette takes as an input argument the virtual register named input (line 6)
e and produces the result in the virtual register output (line 6)

e the variable val is an argument for the compilette multiply_compile (line 3). val is evaluated
at runtime, at the time of code generation, and considered as a constant for the code generation
of the machine code corresponding to the Cdg instruction mul (line 8)

Figure [9 illustrates the code that is generated at runtime by the compilette multiply_compile
from Figure[§] Clearly the generated code will perform worse than the original implementation in C
on such a simple example. However, it should also be clear to the reader that it is possible to produce
at runtime many functionally-equivalent variants of a program routine (here the multiply function).
For example, considering that the variable val equals to a power of two, denoted 2", it is possible to
generate the instruction 1s1.w to execute a left shift of n bits instead of producing a multiply machine
instruction mul . w.

20129

O 00 1 O\ A~ W -

—_
W o - O

R PRrROJECT COGITO
,‘ \ DELIVERABLE D1.1.1

/* a compilette that multiplies with a constant value */
typedef int (*pifi) (int);
pifi multiply_compile(cdg_insn_t *code, int val)

{
#[
Begin code Prelude result = input
mul result, input, #(val)
rtn
End
1#;
return (pifi)code;
}

Figure 8: Simple integer multiplication; implementation in a compilette
0x7a001: stmdb sp!, {r7}
0x7a004d: movs r7, #42
0x7a00f : mul .w r0, r0, r7
0x7a017: ldmia.w sp!, {r7}
0x7a01b: bx 1r

Figure 9: Simple integer multiplication; output of the compilette multiply_compile for val=42

4.4.3 Virtual registers, vectorial registers

The variables manipulated in Cdg are similar to assembly registers. We however describe them as
virtual and vectorial registers:

virtual the mapping to physical registers and the vector size is determined at runtime, at the time of
code generation, when the use of the physical registers in the programming context is known.

vectorial The use of vectorial registers allows to write vectorized data processing in a quite natural
way. The purpose is also to map Cdg instructions to vector machine instructions when they are
available on the target processor.

Cdg virtual registers are typed, so that it is possible to match the assembly instructions with ma-
chine arithmetic operators according to type information.

4.5 Main properties of deGoal backends for code generation

Similar to the software architecture of standard compilers, deGoal backends for code generation are
architecture-dependant. The main difference is however that the backend is aimed to be invocated at
runtime. As a consequence, drastic architecture choices have been made so that code generation can
be fast and memory lightweight.

At runtime, a compilette performs in this order:

21129

l R PrOJECT COGITO
DELIVERABLE D1.1.1

1. register allocation
2. instruction selection

3. instruction scheduling

4.5.1 Register allocation

In dynamic compilers, register allocation is performed affer instruction scheduling: instruction selec-
tion and instruction scheduling are performed on a SSA form. Later the SSA form is analysed and
register allocation is performed. Even if not optimal as compared to graph-colouring techniques, suit-
able approaches for runtime allocation have been developped to provide a good compromise between
code quality and computational cost of register allocation [KWM™08]].

On the contrary, in a compilette register allocation is done first. The idea is to lighten the pressure
on instruction selection and instruction scheduling: if register allocation is done first, it becomes
possible to perform instruction scheduling without intermediate representation ﬂ This comes at the
expense of a potential reduced code quality: for example, compilettes do not support registers spilling.

4.5.2 Instruction selection

Instruction selection is performed at runtime once the runtime constants have been evaluated by the
compilette. Instruction selection is done at the level of Cdg instructions: each Cdg instruction can be
mapped to one or more machine instructions depending on the execution context of the compilette.
For example, the mul Cdg instruction can be mapped on the left shift 1s1.w instruction for particular
operands, or to SIMD instructions when the target processor has a vector unit.

The deGoal framework provides a simple mechanism so that a software developer can extend the
set of instruction selectors.

4.5.3 Instruction scheduling

The generated machine instructions can be either directly written in program memory in order to
fasten code generation, or pushed into an intermediate instruction buffer that is processed by an in-
struction scheduler. The purpose of the instruction scheduler was initially to create instruction bundles
for VLIW processors, but we plan to exploit this feature in the COGITO project to perform instruc-
tion shuffling during runtime code generation. A functional overview of instruction scheduling for a
VLIW processor is illustrated in [CLCI13].

The contents of the instruction buffer is monitored by the instruction scheduler, which regularly
flushes the contents of the instruction buffer to program memory.

2or at least with a minimalist, much lighter intermediate representation

22129

l R PrOJECT COGITO
DELIVERABLE D1.1.1

5 Use of deGoal in the context of COGITO

As explained in section [3] the state of the art protections present the following limitations:

1. General countermeasures, which make the code execution harder to interpret and so the knowl-
edge about the circuit’s functioning harder to recover, are a primary requirement in secure
devices. However, state-of-the-art solutions present performance issues or are not applicable to
secure devices because of resource constraints.

2. Security in a device is incrementally built by adding standalone ad hoc countermeasures. Ad
hoc countermeasures are often proven to be efficient when analysed independently, but are dif-
ficult to integrate in a device since each countermeasure comes with an additional performance
overhead.

Our objective is to go beyond these limitations by introducing several mechanisms in a unique
framework. We list here and detail below the non exhaustive list of mechanisms that will be imple-

mented in deGoal.

e Introduce alea during runtime code generation

Execute different (but functionnaly equivalent) instances of algorithms

Rename registers on-the-fly

With the ability to combine with hardware countermeasures

With limited memory consumption

With high performances

and that are portable to very small processors and secure elements

Figure[I0]reproduces the workflow of deGoal already presented in Figure[5] We have highlighted
here in red the changes needed to integrate these mechanisms in this workflow for the purpose of the
COGITO project. The proposed mechanisms are detailed below.

Introduce alea during runtime code generation The runtime code generation will vary from one
code generation to another, thanks to the use of alea as an input of the compilette (instead of informa-
tion about the data to process as presented in section [d)). Each new code generation would produce a
kernel with a different binary code, while preserving its functionality.

Execute different (but functionnaly equivalent) instances of algorithms Each Cdg instruction is
translated by a compilette into one or more binary code fragments that are functionally equivalent.
Similarly to the work of Agosta et al. [ABP12]], the writing of the database for equivalent code frag-
ments is currently written by hand. As a future improvement of our toolchain, the code fragments
could be automatically generated, similarly to what is done in the backends of static compilers. When
the target architecture is composed of several arithmetic units, it becomes possible to select the arith-
metic unit used, or to introduce fake computations in parallel in another arithmetic unit to scramble
the power consumption.

23129

WR PrROJECT COGITO
l DELIVERABLE D1.1.1

.cdg .C static
binary
'g:gﬁgfe lott register renaming
- 1
MQhJeveI j’ operator selection
ASM at the instruction level
insertion of algorithmic
— ~— — ~— — ~— equivalences
i] lecti £ impl tati
developer degoaltoc C compildr compilette (block level) |prementations

pre-selection of implementations

at the block level architecture selection
(specialised instructions,
HW IPs...)
REWRITETIME . STATIC - RUN TIME
(source to source) TIME (data adaptation)

Figure 10: Update of deGoal workflow according to the objectives of the COGITO project

Random selection of registers at runtime deGoal compilettes embed a mechanism for register
allocation. Our design choice was to offer a mechanism for register allocation that is simple enough
to maintain a fast code generation but that provides good allocation results. In this project we will
integrate simple mechanisms to randomise the register allocation at runtime.

Ability to combine with hardware countermeasures A primary concern in the design of the Cdg
language was to ease the use of hardware accelerators and specialised instructions. Thus, our com-
pilettes are able to achieve highly effective kernels by using intensively hardware accelerators when
available. As a side-effect, it will be easy to integrate the countermeasures implemented with deGoal
compilettes with state-of-the-art countermeasures, implemented in hardware and in software. An-
other side-effect is that factorizing several ad hoc implementations will help reducing the overhead
incurred by ad hoc countermeasures.

Limited memory consumption The implementation that is closer to what we are able to achieve
using deGoal is presented by Agosta et al. [ABP12]]. Their technique however relies on a knowledge
base, embedded in the runtime engine, that contains all the versions of the code fragments that can
be targeted during code morphing. No figures are provided about the resulting memory consumption,
but we expect it to be fairly high. On the contrary, deGoal compilettes embed only the necessary data
to generate the instructions (and algorithmic equivalences in the case of this project) required for the
target kernel.

Speed of runtime code generation Agosta et al. have demonstrated a runtime code generation
technique that is close to what we are able to achieve with deGoal from a functional point of view.
They experimented on an ARM926 processor, which is a relatively large processing platform as com-
pared to the typical processors used in secure elements. In this approach, we estimated the speed of
runtime code generation at 187.10% cycles per morphed instruction. In deGoal, the current speed of
code generation ranges from 10 to 100 cycles per instruction generated in an implementation that is
not targeting secure devices [[CC12]. Even with the addition of extra processing to achieve the inser-
tion of randomisation at various levels, we expect the speed of code generation to remain far above
the state of the art. This will allow to randomise the binary code of critical kernels more often to raise
the level of security.

24129

PRrROJECT COGITO
DELIVERABLE D1.1.1

Portability to very small processors and secure elements Thanks to the small footprint of com-
pilettes and the small amount of processing they require to achieve code generation, we are able to
target very small processing platforms such as secure elements. For illustrative purpose, we have
ported deGoal on the microcontroller MSP430 from Texas Instruments [ChalZ2], which is a small
16-bit microcontroller with very limited memory resources: our development platform contains only
512B of RAM and 8KB of Flash memory.

6 References

[ABP12]

[AC13]

[ADM*10]

[AMN*11]

[AMT12]

[ARRJOS]

[Barl2]

[BDL97]

[BGEC04]

[BGIT01]

Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing method-
ology to automate power analysis countermeasures. In DAC, pages 77-82. ACM, 2012.

Charles Aracil and Damien Couroussé. Software acceleration of floating-point mul-
tiplication using runtime code generation. In Energy Aware Computing Systems and
Applications (ICEAC), 2013 4th Annual International Conference on, pages 18-23, Is-
tanbul, Turkey, December 2013.

Michel Agoyan, J-M Dutertre, A-P Mirbaha, David Naccache, A-L Ribotta, and Assia
Tria. Single-bit dfa using multiple-byte laser fault injection. In Technologies for Home-
land Security (HST), 2010 IEEE International Conference on, pages 113—119. 1EEE,
2010.

Antoine Amarilli, Sascha Miiller, David Naccache, Daniel Page, Pablo Rauzy, and
Michael Tunstall. Can Code Polymorphism Limit Information Leakage? In WISTP,
volume LNCS 6633, pages 1-21, 2011.

Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. Differential fault analysis
of AES: Towards reaching its limits. JACR Cryptology ePrint Archive, 2012:446, 2012.

Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jhaals. Secure Embed-
ded Processing through Hardware-Assisted Run-Time Monitoring. In Proc. Design,
Automation and Test in Europe — DATE, IEEE CS, volume 1, pages 178-183, 2005.

Guillaume Barbu. On the security of Java Card platforms against hardware attacks.
PhD thesis, Grant-funded with Oberthur Technologies and Telecom ParisTech, 2012.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of check-
ing cryptographic protocols for faults. In W. Fumy, editor, Advances in Cryptology -
EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 37-51.
Springer, 1997.

Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white box aes
implementation. In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas
in Cryptography, volume 3357 of Lecture Notes in Computer Science, pages 227-240.
Springer, 2004.

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In Advances in
Cryptology—CRYPTO 2001, pages 1-18. Springer, 2001.

25129

[BICL11]

[BOS03]

[BS97]

[BTG10]

[CC12]

[CCL*14]

[CEJOO03a]

[CEJOO3b]

[CGO1]

[Chal2]

[CK10]

[CLC13]

PRrROJECT COGITO
DELIVERABLE D1.1.1

Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Combined Software
and Hardware Attacks on the Java Card Control Flow. In CARDIS, pages 283-296.
2011.

Johannes Blomer, Martin Otto, and Jean-Pierre Seifert. A new CRT-RSA algorithm
secure against bellcore attacks. In ACM Conference on Computer and Communications
Security, pages 311-320, 2003.

Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
B.S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, volume 1294 of Lecture
Notes in Computer Science, pages 513-525. Springer, 1997.

Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on Java Card 3.0
Combining Fault and Logical Attacks. In CARDIS, pages 148-163, 2010.

Damien Couroussé and Henri-Pierre Charles. Dynamic code generation: An experiment
on matrix multiplication. In Proceedings of the WIP Session, LCTES, 2012.

Henri-Pierre Charles, Damien Couroussé, Victor Lomiiller, Fernando A. Endo, and
Rémy Gauguey. degoal a tool to embed dynamic code generators into applications.
In 23rd International Conference on Compiler Construction (CC 2014). Proceedings
of, LNCS 8409. Springer Verlag, 2014. forthcoming.

Stanley Chow, Phil Eisen, Harold Johnson, and PaulC. Oorschot. A white-box des
implementation for drm applications. In Joan Feigenbaum, editor, Digital Rights Man-

agement, volume 2696 of Lecture Notes in Computer Science, pages 1-15. Springer
Berlin Heidelberg, 2003.

Stanley Chow, Philip Eisen, Harold Johnson, and PaulC. Oorschot. White-box cryptog-
raphy and an aes implementation. In Kaisa Nyberg and Howard Heys, editors, Selected
Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 250—
270. Springer Berlin Heidelberg, 2003.

Jean-Sébastien Coron and Louis Goubin. On Boolean and arithmetic masking against
differential power analysis. In Cryptographic Hardware and Embedded Systems, vol-
ume 1965 of Lecture Notes in Computer Science, pages 231-237. Springer, 2001.

Henri-Pierre Charles. Basic infrastructure for dynamic code generation. In workshop
"Dynamic Compilation Everywhere", in conjunction with the 7th HIPEAC conference,
2012.

Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improvement of the random
delay countermeasure of ches 2009. In Proceedings of the 12th international conference
on Cryptographic hardware and embedded systems, CHES’ 10, pages 95-109, Berlin,
Heidelberg, 2010. Springer-Verlag.

Damien Couroussé, Victor Lomiiller, and Henri-Pierre Charles. Introduction to Dy-
namic Code Generation — an Experiment with Matrix Multiplication for the STHORM
Platform, chapter 6, pages 103—124. Springer Verlag, 2013.

26/29

[CTL97]

[DMN+12]

[DPBP*13]

[DVDF*11]

[Faul3]

[Gir07]

[GSF10]

[HOMO6]

[HPO4]

[ICL10]

[JILO6]

[JMRO7]

PRrROJECT COGITO
DELIVERABLE D1.1.1

Hamid Choukri and Michael Tunstall. Round reduction using faults. In FDTC ’05: Pro-
ceedings of the second Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 13-24, 2005.

Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating
transformations. Technical report, Department of Computer Science, The University of
Auckland, New Zealand, 1997.

J-M Dutertre, A-P Mirbaha, David Naccache, A-L Ribotta, Assia Tria, and Thierry
Vaschalde. Fault round modification analysis of the advanced encryption standard. In
Hardware-Oriented Security and Trust (HOST), 2012 IEEE International Symposium
on, pages 140-145. IEEE, 2012.

Jean-Max Dutertre, R Possamai Bastos, Olivier Potin, Marie-Lise Flottes, Bruno
Rouzeyre, and Giorgio Di Natale. Sensitivity tuning of a bulk built-in current sensor
for optimal transient-fault detection. Microelectronics Reliability, 53(9):1320-1324,
2013.

Marion Doulcier-Verdier, J-M Dutertre, Jacques Fournier, J-B Rigaud, Bruno Robisson,
and Assia Tria. A side-channel and fault-attack resistant aes circuit working on dupli-
cated complemented values. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2011 IEEE International, pages 274-276. IEEE, 2011.

Emilie Faugeron. Manipulating the Frame Information with an Underflow Attack. In
CARDIS 2013, November 27th-29th 2013.

Christophe Giraud. Attaques de Cryptosystmes Embarqués et Contre-Mesures Asso-
ciées. PhD thesis, Université de Versailles Saint-Quentin, 2007.

Sylvain Guilley, Laurent Sauvage, Florent Flament, Vinh-Nga Vong, Philippe
Hoogvorst, and Renaud Pacalet. Evaluation of power constant dual-rail logics coun-
termeasures against DPA with design time security metrics. IEEE Trans. Computers,
59(9):1250-1263, 2010.

Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card imple-
mentation resistant to power analysis attacks. In Applied Cryptography and Network
Security, volume LNCS 3989, pages 239-252. Springer, 2006.

E. Hubbers and E. Poll. Transactions and non-atomic API calls in Java Card: specifica-
tion ambiguity and strange implementation behaviours. Technical report, University of
Nijmegen, 2004.

Julien Iguchi-Cartigny and Jean-Louis Lanet. Developing a Trojan applets in a smart
card. Journal in Computer Virology, 6(4):343-351, 2010.

Joint Interpretation Library — Application of Attack Potential to Smartcards.
http://www.ssi.gouv.fr, 2006.

Marc Joye, Pascal Manet, and Jean-Baptiste Rigaud. Strengthening hardware AES im-
plementations against fault attacks. IET Information Security, 1(3):106—110, September
2007.

27129

[KJJ99]

[Koc96]

[KWM08]

[LSGT10]

[LZ14]

[MDF*09]

[MKRM11]

[MSS06]

[MW10]

[NRADI1]

[Orall]

[PQO3]

PRrROJECT COGITO
DELIVERABLE D1.1.1

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, pages 388-397, 1999.

Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In Advances in Cryptology - Crypto’96, pages 104—113, New-York,
1996. Springer-Verlag.

Thomas Kotzmann, Christian Wimmer, Hanspeter Mossenbdck, Thomas Rodriguez,
Kenneth Russell, and David Cox. Design of the java hotspot client compiler for java 6.
ACM TACO, 5(1):7:1-7:32, 2008.

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi,
and Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard and FranA§ois-Xavier
Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, vol-
ume 6225 of Lecture Notes in Computer Science, pages 320-334. Springer Berlin /
Heidelberg, 2010. 10.1007/978-3-642-15031-9_22.

K. Tobich J.-M. Dutertre P. Maurine L. Guillaume-Sage J. Clédiere A. Tria L. Zussa,
A. Dehbaoui. Efficiency of a glitch detector against electromagnetic fault injection. In
Proceedings of DATE, 2014.

H. Maghrebi, J.-L. Danger, F. Flament, S. Guilley, and L. Sauvage. Evaluation of coun-
termeasure implementations based on boolean masking to thwart side-channel attacks.
In Signals, Circuits and Systems (SCS), 2009 3rd International Conference on, pages 1
—6, nov. 2009.

M. Mozaffari-Kermani and A. Reyhani-Masoleh. A lightweight high-performance fault
detection scheme for the advanced encryption standard using composite fields. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 19(1):85 91, jan. 2011.

Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salmasizadeh. A gen-
eralized method of differential fault attack against AES cryptosystem. In CHES, pages
91-100, 2006.

Shufu Mao and T. Wolf. Hardware support for secure processing in embedded systems.
Computers, IEEE Transactions on, 59(6):847 —854, june 2010.

Minh-Huu Nguyen, Bruno Robisson, Michel Agoyan, and Nathalie Drach. Low-cost
recovery for the code integrity protection in secure embedded processors. In Hardware-
Oriented Security and Trust (HOST), 2011 IEEE International Symposium on, pages
99-104. IEEE, 2011.

Oracle. Java Card 3 Platform, Virtual Machine Specification, Classic Edition. Number
3.0.4. Oracle, Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065,
September 2011.

Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique against
SPN structures, with application to the AES and Khazad. In C.D. Walter, editor, Cryp-
tographic Hardware and Embedded Systems — CHES 2003, volume 2779 of Lecture
Notes in Computer Science, pages 77-88. Springer, 2003.

28129

[RPD09]

[SA02]

[Sha00]

[SLOI12]

[SMPO7]

[TR12]

[Wag04]

[WMGPO07]

[ZCMT96]

PRrROJECT COGITO
DELIVERABLE D1.1.1

Bruno Robisson and Pascal Manet. Differential behavioral analysis. In Cryptographic
Hardware and Embedded Systems-CHES 2007, pages 413-426. Springer Berlin Hei-
delberg, 2007.

Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and shuf-
fling for software implementations of block ciphers. In Proceedings of the 11th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, CHES *09, pages
171-188, Berlin, Heidelberg, 2009. Springer-Verlag.

Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks. In
CHES, pages 2—-12, 2002.

Adi Shamir. Protecting smart cards from passive power analysis with detached power
supplies. In Proceedings of Cryptographic Hardware and Embedded Systems, Lecture
Notes in Computer Science, pages 71-77. Springer, 2000.

K. Sakiyama, Y. Li, K. Ohta, and M. Iwamoto. Information-theoretic approach to opti-
mal differential fault analysis. Information Forensics and Security, IEEE Transactions
on, 7(1):109 —120, feb. 2012.

Elisabeth Oswald Stefan Mangard and Thomas Popp. Power Analysis Attacks - Reveal-
ing the Secrets of Smart Cards. Springer Verlag, 2007.

B. N Thampi-J.-L. Lanet T. Razandralambo, G. Bouffard. A Dynamic Syntax Interpre-
tation for Java Based Smart Card to Mitigate Logical Attacks. In SNDS, pages 185-194,
2012.

David Wagner. Cryptanalysis of a provably secure CRT-RSA algorithm. In ACM Con-
ference on Computer and Communications Security, pages 92-97, 2004.

Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of white-
box des implementations with arbitrary external encodings. In Selected Areas in Cryp-
tography, pages 264-277. Springer, 2007.

James F. Ziegler, Huntington W. Curtis, Hans P. Muhlfeld, Charles J. Montrose, B. Chin,
Michael Nicewicz, C. A. Russell, Wen Y. Wang, P. Hosier, L. E. LaFave, James L.
Walsh, José M. Orro, G. J. Unger, John M. Ross, Timothy J. O’Gorman, B. Messina,
Timothy D. Sullivan, A. J. Sykes, H. Yourke, Thomas A. Enger, Vikram R. Tolat, T. S.
Scott, Allen H. Taber, R. J. Sussman, W. A. Klein, and C. W. Wahaus. IBM experi-
ments in soft fails in computer electronics (1978-1994). IBM Journal of Research and
Development, 40(1):3—18, January 1996.

29129

	Executive Summary
	Threats against Smart Cards
	Hardware Attacks
	Logical Attacks

	Current countermeasures embedded into smart cards
	Hardware countermeasures
	Software countermeasures
	Synthesis

	deGoal: code polymorphism for embedded systems
	Sketching deGoal
	Components for code generation
	Application building, runtime code generation and execution
	The Cdg language
	Main properties of deGoal backends for code generation

	Use of deGoal in the context of COGITO
	References

