COGITO: Runtime Code
Generation to Secure Devices

8emes rencontres de la communauté francaise de
compilation — Nice

Damien Couroussé

damien.courousse@cea.fr

CEA-LIST / DACLE / LIALP — Grenoble
July 3, 2014

COGITO

leti & List

Motivation pitch

Domain

Runtime code generation
. for security purposes in embedded systems, mainly against physical attacks

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 2
3 ights reserved

Motivation pitch

Domain

Runtime code generation
. for security purposes in embedded systems, mainly against physical attacks

vy

Problem: program code is invariant

Code polymorphism (thanks to runtime code generation) could improve this:
H reverse engineering
m physical attacks

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 2
3 ights reserved

Motivation pitch

Domain

Runtime code generation
. for security purposes in embedded systems, mainly against physical attacks

vy

Problem: program code is invariant

Code polymorphism (thanks to runtime code generation) could improve this:
reverse engineering
physical attacks

v

Objectives: explore the use of runtime code generation as a means to
secure embedded systems against physical attacks

How? deGoal:
runtime code generation and code optimizations
suitable for constrained embedded systems:
m fast code generation
m within tiny memory footprints: works on Tl's Launchpad MSP430 (512 B
RAM)

4

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 2
ights reserved

QOutline

This talk is about:
An overview of security issues — aka physical security of embedded systems
for dummies
and how code polymorphism is likely to bring new solutions
B A practical solution to achieve code polymorphism for security: deGoal
m overview of deGoal
m modification for security purposes

m demo time

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 3
CEA. Al righ ed

COGITO - ANR INS 2013

Agence Nationale de la Recherche

m Project coordination
m Bringing the deGoal framework
m Compilation & runtime code generation

m Scientific coordination
Y . m Security analysis
SIC m Physical attacks and software countermeasures
m JavaCards

m Security analysis

9 .
Ecole Nationale .
\\ﬁ/Supérieure des Mines m Physical attacks, HW/SW countermeasures
I SAINT-ETIENNI m Experimental validation
Public website
www.cogito-anr.fr J

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 4
3 ights reserved

http://www.cogito-anr.fr

Code polymorphism as a proposal to improve physical security in embedded
systems

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 5

Physical attacks

An attack is usually split between:

a first step attack:
m global inspection of the target
m identification of the security components involved (HW/SW)
m identification of weaknesses

a second step attack:
m focused attack
m on an identified potential weakness

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 6
CEA. Al righ ed

Approx. typology of physical attacks

= Reverse engineering
m HW inspection: decapsulation, abrasion, chemical etching, memory
extraction, etc.

m SW inspection: debug, memory dumps, code analysis, etc.

= Side channel attacks: SPA (Simple Power Analysis), DPA (Differential -),
CPA (Correlation -). ..

m Electromagnetic analysis
m Power analysis
m Acoustic analysis
m Timing attacks
m Fault injection attacks
m under/over voltage drops
iom / laser beam, optical illumination

(]
m glitch attacks
(]

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 7
CEA. All ights reserved

Approx. typology of physical attacks

= Reverse engineering
m HW inspection: decapsulation, abrasion, chemical etching, memory

e SPA on AES [Kocher, 2011]:
m S 05 1 15 2 25
m Side ¢ _ _. rential -),
CPA (= S
m E
=Pz S
A
= T S ‘ ‘ | \‘ E
= Fault d ‘ '
H ul =1 =
m o
" gl 05 1 15 2 25

- the AES rounds are "clearly” visible

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 7
CEA. All ights reserved

Approx. typology of physical attacks

= Reverse engineering
m HW inspection: decapsulation, abrasion, chemical etching, memory
extraction, etc.
S SPA on RSA [Kocher, 2011]:
L Sidec — — irential),
CPA (

mE|01-01-0000001-01-01-001-0 11 1= 0 1--0 01 1— 1—-

m P
m A
T

= Fault
m ui Direct access to key's contents:
m ic m bits 0 = square

m bits 1 = square + mul

m gl
[T

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 7
CEA. All ights reserved

" DPA on AES:

get n traces from the target, using selected clear inputs

Approx. typology of physical attacks

compute intermediate values for each input, for each possible key values

[compute {power/EM/timing. ..} estimation from the intermediate values -),

1 correlate with the measurement traces

0.5

-0.5
0 50 100

Time [ps]

Figure 6.3. All rows of R. Key hypothesis
225 is plotted in black, while all other key
hypotheses are plotted in gray.

0.5

Correlation
<

-0.5
0 500 1000

Traces

Figure 6.4. 'The column of R at 13.8 us for
different numbers of traces. Key hypotheses
23 dapictied bk [Mangard, 2007]

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 7

Cceatech Approx. typology of physical attacks

= Reverse engineering
m HW inspection: decapsulation, abrasion, chemical etching, memory
extraction, etc.

m SW inspection: debug, memory dumps, code analysis, etc.

= Side channel attacks: SPA (Simple Power Analysis), DPA (Differential -),
CPA (Correlation —)...=- temporal & spatial sensitivity

m Electromagnetic analysis
m Power analysis
m Acoustic analysis
m Timing attacks
m Fault injection attacks
m under/over voltage drops
iom / laser beam, optical illumination

(]
m glitch attacks
(]

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 7
CEA. All ights reserved

Cceatech Approx. typology of physical attacks

= Reverse engineering
m HW inspection: decapsulation, abrasion, chemical etching, memory
extraction, etc.

m SW inspection: debug, memory dumps, code analysis, etc.

= Side channel attacks: SPA (Simple Power Analysis), DPA (Differential -),
CPA (Correlation —)...=- temporal & spatial sensitivity

m Electromagnetic analysis
m Power analysis
m Acoustic analysis
m Timing attacks
m Fault injection attacks = temporal & spatial sensitivity
m under/over voltage drops
iom / laser beam, optical illumination

(]
m glitch attacks
(]

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 7
CEA. All ights reserved

Software protections against physical

attacks

Hiding and masking decorrelate data processing from power consumption

Intermediate values of the cryptographic algorithm

E Masking countermeasures

Intermediate values p d by the cryptographic
device

H Hiding countermeasures

Power consumption of the cryptographic device

Our proposal

Hiding: remove the data dependency of
the power consumption

Masking: randomize the intermediate
values that are processed

by the cryptographic device (vs.
algorithmic intermediate values)

[Mangard, 2007]

Use code polymorphism to tackle the problem of program contents as an

invariant

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 8
CEA. All ights reserved

Code polymorphism

Definition
Regularly changing the behaviour of a (secured) component, at runtime, while
maintaining unchanged its functional properties

How?
m Generate secured (& polymorphic) functions at runtime
m ... thanks to a code generator
m Generate a new morphing each time it is necessary
m security factor w
What for ?
m SW reverse: more difficult
m the secured code is not available before runtime
m the secured code regularly changes its form
m meta-analysis of the code generator?
m polymorphism changes the spatial and temporal properties of the secured
code: side channel attacks fault attacks

m combine usual SW protections against 2nd step attacks
COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 9

COGITO sketched

cipher key]
1
f cipher]_) ciphered
clear text
L program message

T

alea

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 10
CEA. Al rights reserved

COGITO sketched

[cipher key
\ l
polymorphic polymorphic ciphered
clear text . .
code generator cipher instance message
alea T)

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 10
CEA. Al rights reserved

QOutline

deGoal
m Introduction to deGoal
m Secured runtime code generation with deGoal
m Potential limitations

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 11
3 ights reserved

Overview of deGoal

Program performance: strong correlation to data
Static compilation: no (or almost no) knowledge about the data J

m deGoal is a tool that allows to design compilettes
m A compilette is:
m an ad hoc code generator that targets one kernel (# application)

m aimed to be invocated at runtime

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 12
3 igh ed

Overview of deGoal

Program performance: strong correlation to data
Static compilation: no (or almost no) knowledge about the data J

m deGoal is a tool that allows to design compilettes
m A compilette is:
m an ad hoc code generator that targets one kernel (# application)

m aimed to be invocated at runtime

compiler
\ Binary Program

U

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 12
3 igh ed

Overview of deGoal

Program performance: strong correlation to data
Static compilation: no (or almost no) knowledge about the data J

m deGoal is a tool that allows to design compilettes
m A compilette is:
m an ad hoc code generator that targets one kernel (# application)

m aimed to be invocated at runtime

compiler
Binary Program
DataSets \ inary 8

Data Result

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 12
3 igh ed

Overview of deGoal

Program performance: strong correlation to data
Static compilation: no (or almost no) knowledge about the data J

m deGoal is a tool that allows to design compilettes
m A compilette is:
m an ad hoc code generator that targets one kernel (# application)

m aimed to be invocated at runtime

compiler
Binary Program
DataSets \ inary 8

processing
kernel

\@/

‘ Performance l
W 010) Data Result

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 12
3 igh ed

Overview of deGoal

Program performance: strong correlation to data
Static compilation: no (or almost no) knowledge about the data J

m deGoal is a tool that allows to design compilettes

m A compilette is:
m an ad hoc code generator that targets one kernel (# application)

m aimed to be invocated at runtime

compiler

Binary Program
DataSets @ \ —
0100 1000
0110 1111
0111 0016
" 00 10
L 4 compilette Bon g eiis it
Performance

(PU

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 12

Overview of deGoal

Program performance: strong correlation to data
Static compilation: no (or almost no) knowledge about the data J

m deGoal is a tool that allows to design compilettes

m A compilette is:
m an ad hoc code generator that targets one kernel (# application)

m aimed to be invocated at runtime
Properties of compilettes:

-
Binary Program ™ low memory footprint
@ \ B = high portability

DataSets
0111 0010
e compilette BRRi i WGE
t m Modify kernel's binary instructions
\ / m according to the input data
® whenever needed at runtime
Performance

(PU

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 12
3 igh ed

ceatech Approaches for code specialization

Static code versionning (e.g. C++ Templates) e static compilation
e runtime: select executable

l““--' RUNTTHE e memory footprint ++

e limited genericity
e runtime blindness

Dynamic compilation
(JITs, e.g. Java Hotspot) o overhead ++

Cr D S Al A
Iﬁb AUNTINE e not designed for data

dependant code-optimisations
Intermediate Representation

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 13
3 ights reserved

ceatech Approaches for code specialization

Static code versionning (e.g. C++ Templates) e static compilation
e runtime: select executable

l“"“"‘" RONTINE e memory footprint ++

e limited genericity
Runtime code generation, with deGoal e runtime blindness
A compilette is an ad hoc code generator,
targeting one executable e .
e fast code generation
e memory fc;gotprint ——
= e data-driven code

generation

executable

RUNTIME

Dynamic compilation
(JITs, e.g. Java Hotspot) o overhead ++

G O EET FESie 44
[IR] [IR] e not designed for data
RUNTIME

dependant code-optimisations
Intermediate Representation

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 13

Development flow using deGoal

static ° runtime
-cdg ;ﬁ o -cdg. C;ﬁ gx binary 3 binary
o &5 3
: 52 3
Q ’ Q + §
i i
' '
' '
| |
| |
: :
STATIC]
~DESIGN ! RUN TIME
TIME > | <o————COMPILATION > (data adaptation) ———
' TIME '

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 14

Supported architectures

m ARM 32-bits, Thumb 1 & 2 (including NEON, VFP)

m Cortex-A8 (beagleBoard), Cortex-A9 (snowball),
Cortex-M3 (STM32 discovery — 8 kB RAM)

m gemb + McPAT
m MSP430 from Texas Instruments

m TlI's Launchpad (512 bytes only!), Zolertia
m MIPS 32 bits

m VLIW architectures: STxP70 (ST-Microelectronics), other VLIWs under
NDA

= Nvidia GPUs (Cuda PTX assembly language)

It is the only tool for dynamic code generation able to target very
small processors, up to 8-bit microcontrollers
Demonstrated for the 16-bit MSP430 with only 512 bytes of RAM:

Software Acceleration of Floating-point Multiplication using Runtime Code
Generation. C. Aracil & D. Couroussé. ICEAC 2013

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 15
CEA. Al rights reserved

A sketch of deGoal for COGITO

ciphered
message

cipher
program

clear text

alea

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 16
CEA. Al rights reserved

A sketch of deGoal for COGITO

cipher key

clear text

alea

N

!

deGoal
compilette

cipher ciphered
program message

T

i

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 16
CEA. Al rights reserved

Overview of deGoal capabilities

What does it mean for COGITO:
m Portability to very small processors and
secure elements
m Limited memory consumption
m Fast runtime code generation
deGoal runtime capabilities | w Ability to combine with hardware

Performed in this order: countermeasures
register selection m Introduce alea during runtime code
instruction selection generation [1,2,3]
instruction scheduling m Polymorphism: random generation of

semantically equivalent sequences
m random mapping to physical registers [1]
m use of semantic equivalences [2]
m instruction scheduling [3]
m insertion of dummy operations [3]

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 17
3 igh ed

Potential limitations and flaws

Requirement: writable program memory

m Current practice:
m generate code in RAM (most frequent case)
m or in ROM (flash)

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 18
3 ights reserved

Potential limitations and flaws

Requirement: writable program memory

m Current practice:
m generate code in RAM (most frequent case)
m or in ROM (flash)
m Is it acceptable for the industry of security?

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 18
3 ights reserved

Potential limitations and flaws

Requirement: writable program memory

m Current practice:

m generate code in RAM (most frequent case)

m or in ROM (flash)
m Is it acceptable for the industry of security?
m Possible workarounds?

m Lower the side effects of this issue:

B obfuscate the code generator with encryption
" ...

m Hardware design of a dedicated block . ..

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 18
CEA. All rights reserved
e L i R A AR AR MR R R EEE—— R RERERRBREREPEEEEEEEEEBEEEEELBBBBBBEBEEE

Potential limitations and flaws

Requirement: writable program memory

m Current practice:

m generate code in RAM (most frequent case)

m or in ROM (flash)
m Is it acceptable for the industry of security?
m Possible workarounds?

m Lower the side effects of this issue:

B obfuscate the code generator with encryption
" ...

m Hardware design of a dedicated block . ..

The code generator itself must be secured agains physical attacks
Out of the scope of this talk

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 18

CEA. All rights rese;

Demo

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 19

Target : [B] = a x [A]

typedef void (*fp) (int*);
int src[TABLE_LEN], dest[TABLE_LEN];

void vector_mul(int * A, int A_len, int alpha, int * B) {
int i; for (i=0; i<A_len; i++) {
B[i] = alpha * A[i];
}

int main() {
cdg_insn_t * code = CDGALLOC(ALLOC_LEN) ;
compilette(code, src, vsize, alpha); /* code generation */

fp kernel = (fp)code;
kernel (dest) ; /* execution */

PRINT("dest :");
for (i = 0; i < vsize; ++i) { PRINT("%3d ", dest[il); }

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 20

I rigl e

void compilette(cdg_insn_t* code, int * A_addr, int A_len, int alpha) {
#[
Begin code Prelude B_addr

Type ptr_t int 32

Type vint_t int 32 #(4A_len)
Alloc vint_t v

Alloc ptr_t tmp

mv tmp, #(A_addr)
lw v, tmp

mul v, v, #(alpha)
sw B_addr, v

rtn

End
1#;

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 21

I rigl e

= non-polymorphic execution

m random register allocation
m instruction shuffling

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 22

Two positions opened !!
m Post-doc on COGITO

keywords: security, code generation,
[loT]
m Embedded SW developper for MPSoCs

keywords: embedded, runtime SW,
code generation, parallelism

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 23
CEA. Al rights reserved

B INSTITUT B INSTITUT
CARNOT CARNOT

« M « M Eys
@ATEC“ digiteo

leti

Centre de Grenoble

The COGITO project

Code polymorphism as a proposal to improve physical security in embedded
systems

deGoal
m Introduction to deGoal
m Secured runtime code generation with deGoal
m Potential limitations

Demo

COGITO: Runtime Code Generation to Secure Devices | DACLE Division | July 3, 2014 | 25

CEA. All rights reserv

	The COGITO project
	Code polymorphism as a proposal to improve physical security in embedded systems
	deGoal
	Demo

